فهرست بستن

دسته: محاسبات ماتریسی

پیاده‌سازی رگرسور خطی در پایتون

رگرسیون خطی تخمین یک پارامتر به‌صورت تابعی خطی از تعدادی داده دیگر می‌باشد. در عمل ما به دنبال به دست آوردن یک خط یا در حالت کلی اَبَر صفحه هستیم که با توجه به معیار خطای تعریف شده بهینه است. این روش کاربرد ویژه در علوم و مهندسی داشته و آشنایی با نحوه پیاده‌سازی آن در پایتون موضوع این نوشته می‌باشد.

نکاتی پیرامون کار با آرایه‌های numpy در پایتون

کتابخانه محاسبات عددی numpy به همراه کتابخانه‌های scipy و matplotlib مجموعه‌ای غنی از امکانات را برای انجام شبیه سازی های علمی و بازنمایی آنها فراهم آورده اند. لکن نحوه استفاده از امکانات فراهم شده توسط این کتابخانه ها تعیین کننده میزان راحتتر شدن کار برای ما می باشد. در این نوشته به بررسی ریزه کاری هایی از آرایه numpy پرداخته خواهد شد.

نحوه استفاده صحیح از numpy برای افزایش سرعت محاسبات

کتابخانه‌های جنبی پایتون اکثرا از  رابط Python/C برای افزایش سرعت اجرا استفاده می کنند. برای اینکه بتوانیم از این ظرفیت بالقوه استفاده نماییم باید حدالامکان فراخوانی مکرر توابع کتابخانه‌ای را کاهش دهیم. بعبارت عملی‌تر از استفاده از حلقه‌ها و فراخوانی توابع پشت‌سر هم و زاید اجتناب نماییم. در این نوشته با مثال‌های متعدد نحوه استفاده صحیح از numpy برای افزایش سرعت محاسبات توضیح داده خواهد شد.

محاسبات ریاضی سمبولیک در پایتون با استفاده از کتابخانه Sympy

در کنار مجموعه کتابخانه‌های NumPy و SciPy که محاسبات علمی در پایتون را تسهیل نموده و روش‌های عددی متعددی را برای کاربران فراهم می‌آورند، کتابخانه SymPy امکان محاسبات سمبولیک را فراهم می‌آورد. این کتابخانه قابلیت محاسبات جبری، محاسبه حد، مشتق و انتگرال، حل معادلات و کار بر روی ماتریس‌ها را بصورت پارامتری برای ما به ارمغان می‌آورد. در این نوشته با ذکر چند مثال با این کتابخانه آشنا می‌شویم.

باز خوانی اطلاعات ذخیره شده توسط متلب در پایتون

اگر جزو افرادی هستید که قبلا محاسبات علمیتان را با متلب انجام می دادید و در حال مهاجرت به پایتون هستید، احتمال قوی برایتان پیش می آید که بخواهید اطلاعات حاصل از محاسبات متلب را که ذخیره نموده اید، از طریق پایتون باز کرده و محاسبات دیگری را با پایتون بر روی داده ها انجام دهید. در این نوشته باز خوانی اطلاعات ذخیره شده با متلب در پایتون توضیح داده خواهد شد.

شروع به استفاده از کتابخانه NumPy در پایتون با صد قدم

اگر از زبان خشک، بی روح و غیر تکنیکی متلب برای شبیه سازی ها و محاسبات علمی و عددیتان خسته شده اید و می خواهید با زبان پایتون که انعطاف پذیری و سرعت بیشتری نسبت به متلب دارد به انجام کارهای شبیه سازیتان بپردازید، پیشنهاد ما برای شما استفاده از کتابخانه NumPy می‌باشد. این کتابخانه در کنار دو کتابخانه SciPy و  matplotlib تمام آنچه شما نیاز دارید را در خود دارد. در این نوشته در صد قدم ساده و ابتدایی شروع به یادگیری سریع کار با NumPy خواهیم کرد.

معرفی کتابخانه محاسبات علمی و جبر خطی آرمادیلو Armadillo در سی ++

احتمالا شما هم تا بحال از سرعت پایین اجرای کدهای متلب کلافه شده اید و به این فکر کرده اید که ای کاش توابع و ابزارهای ارائه شده در نرم افزار متلب برای سی ++ هم وجود داشت. نه در حد کامل ولی تا حدودی این آرزو برآورده شده است. کتابخانه محاسبات ماتریسی آرمادیلو (Armadillo) این امکان را فراهم نموده است. در این نوشته به معرفی امکانات این کتابخانه و مقایسه آن با کتابخانه های دیگر پرداخته خواهد شد.

مقدمه‌ای بر محاسبات ماتریسی در پایتون با استفاده از کتابخانه NumPy

امروزه اساس هر بسته نرم‌افزاری یا کتابخانه‌ای که برای محاسبات علمی طراحی گردیده است، محاسبات ماتریسی می‌باشد. با توجه به این که زبان برنامه‌نویسی پایتون روز به روز بطور فزاینده‌ای از طرف قشر دانشگاهی برای انجام محاسبات علمی مورد استفاده قرار می‌گیرد لذا طبیعی است که کتابخانه‌های متنوعی برای اینکار طراحی شده باشد. یکی از پر طرفدارترین کتابخانه‌های محاسبات عددی در پایتون، NumPy می‌باشد. در این نوشته به دنبال معرفی مقدماتی دستورات مورد نیاز برای انجام محاسبات ماتریسی با استفاده از این کتابخانه می‌باشیم.